首页> 外文OA文献 >Annotating mobile phone location data with activity purposes using machine learning algorithms
【2h】

Annotating mobile phone location data with activity purposes using machine learning algorithms

机译:使用机器学习算法为活动目的注释手机位置数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Individual human travel patterns captured by mobile phone data have been quantitatively characterized by mathematical models, but the underlying activities which initiate the movement are still in a less-explored stage. As a result of the nature of how activity and related travel decisions are made in daily life, human activity-travel behavior exhibits a high degree of spatial and temporal regularities as well as sequential ordering. In this study, we investigate to what extent the behavioral routines could reveal the activities being performed at mobile phone call locations that are captured when users initiate or receive a voice call or message.Our exploration consists of four steps. First, we define a set of comprehensive temporal variables characterizing each call location. Feature selection techniques are then applied to choose the most effective variables in the second step. Next, a set of state-of-the-art machine learning algorithms including Support Vector Machines, Logistic Regression, Decision Trees and Random Forests are employed to build classification models. Alongside, an ensemble of the results of the above models is also tested. Finally, the inference performance is further enhanced by a post-processing algorithm.Using data collected from natural mobile phone communication patterns of 80 users over a period of more than one year, we evaluated our approach via a set of extensive experiments. Based on the ensemble of the models, we achieved prediction accuracy of 69.7%. Furthermore, using the post processing algorithm, the performance obtained a 7.6% improvement. The experiment results demonstrate the potential to annotate mobile phone locations based on the integration of data mining techniques with the characteristics of underlying activity-travel behavior, contributing towards the semantic comprehension and further application of the massive data.
机译:通过移动电话数据捕获的个人人类出行方式已通过数学模型进行了定量表征,但引发这一运动的基本活动仍处于探索阶段。由于在日常生活中如何做出活动和相关旅行决定的性质的结果,人类的旅行行为表现出高度的时空规律性和顺序性。在这项研究中,我们调查了行为例程在多大程度上可以揭示在用户发起或接收语音呼叫或消息时捕获的手机呼叫位置处正在执行的活动。我们的探索包括四个步骤。首先,我们定义一组表征每个呼叫位置的综合时间变量。然后在第二步中应用特征选择技术来选择最有效的变量。接下来,采用一组最新的机器学习算法,包括支持向量机,逻辑回归,决策树和随机森林,以建立分类模型。同时,还对上述模型的结果进行了测试。最后,通过后处理算法进一步提高了推理性能。使用从80位用户的自然手机通信模式中收集的数据超过一年的时间,我们通过一系列广泛的实验对我们的方法进行了评估。基于模型的整体,我们实现了69.7%的预测准确性。此外,使用后处理算法,性能提高了7.6%。实验结果证明了基于数据挖掘技术与潜在活动-旅行行为特征的集成来注释手机位置的潜力,这有助于海量数据的语义理解和进一步应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号